

**Connection Impact Assessment Application Form** 

This Application Form is for Generators applying for a Connection Impact Assessment (CIA). In certain circumstances, London Hydro may require additional information to conduct the Impact Assessment. Should this be the case the Generator will be duly advised.

This Application Form is required for any of the following please select all that are applicable:

- New Generators applying for Connection Impact Assessment ("CIA")
- New Generators applying for revision to their original Connection Impact Assessment ("CIA")
- Existing Generators to verify information related to current connection to the London Hydro system. It is part of the overall Distribution Connection Agreement.

# **NOTES:**

- 1. Applicants and generators are cautioned NOT to incur major expenses until London Hydro has completed a Connection Impact Assessment (CIA) study and approval to connect the proposed generation is granted.
- 2. All fields below are mandatory, except where noted. Incomplete applications may be returned by London Hydro Inc. ("London Hydro").
- 3. All technical submissions (Connection Impact Assessment, single line diagrams, etc.) must be signed and sealed by a licensed Ontario Professional Engineer (P.Eng.).
- 4. New IESO Market Rules regarding voltage ride through are now required (Part 1.6, Section 3.3 of the Market Manual)

| Da    | te: (                    | dd / mm / yyyy)             | Contact Pers<br>Signature:       | son Name:      |                              |
|-------|--------------------------|-----------------------------|----------------------------------|----------------|------------------------------|
| Ap    | plication Type: [        | New CIA Appli               | cation CIA                       | Revision/Rewo  | rk                           |
|       | LDC Name:                | LONDON H                    | IYDRO INC.                       |                |                              |
|       | Contact Person           | Dane Kirilo                 | ovic                             |                |                              |
|       | Mailing Address          | : <u>111 Hortor</u>         | <u> Street, P.O. Box</u>         | 2700           |                              |
|       |                          | London, O                   | N, N6A 4H6                       |                |                              |
|       | Telephone:               | 519-661-58                  | 00 ext. 5723                     |                |                              |
|       | Fax:                     | <u>519-661-52</u>           | .75                              |                |                              |
|       | E-mail:                  | generation                  | generation@londonhydro.com       |                |                              |
|       |                          |                             |                                  |                |                              |
| 1.    | Original CIA P           | oject ID# (if app           | licable):                        | Project Nan    | ne:                          |
| 2.    | Project Type:            | 🗌 FIT 🛛                     | Net Metering                     | 🗌 Load Disp    | placement                    |
| 3.    | Independent E            | lectricity System           | o Operator (IESO)                | Feed-In Tariff | (FIT) #:                     |
| 4.    | Project Dates:           | Proposed St<br>Proposed In- | art of Construction<br>·Service: | :              | (dd/mm/yyyy)<br>(dd/mm/yyyy) |
| 5.    | Project Size:            | Nameplate Capa              | acity                            | kW             |                              |
| Lond  | don Hydro Inc. – Connect | ion Impact Assessment       |                                  |                |                              |
| April | 2021, Rev. 0             |                             | Page 1 of 6                      |                |                              |

# 6. Project Location: Municipal Address

# 7. Project Information:

Choose a Single Point of Contact: Owner Consultant

|                        | Generator   | Owner       | Consultant |
|------------------------|-------------|-------------|------------|
|                        | (Mandatory) | (Mandatory) | (Optional) |
| Company/Person         |             |             |            |
| Contact Person         |             |             |            |
| Mailing Address Line 1 |             |             |            |
| Mailing Address Line 2 |             |             |            |
| Telephone              |             |             |            |
| Cell                   |             |             |            |
| Fax                    |             |             |            |
| E-mail                 |             |             |            |
|                        |             |             |            |

Preferred method of communication with London Hydro: 🗌 E-mail 🔲 Telephone 🗌 Mail 🔲 Fax

## 8. Customer Status:

|     |            | Billing Account Number:                                                      |             |                 |                          |
|-----|------------|------------------------------------------------------------------------------|-------------|-----------------|--------------------------|
|     |            | Customer name registered to this Account:                                    |             |                 |                          |
|     |            | Are you a HST registrant?                                                    | 🗌 Yes       | 🗌 No            |                          |
|     |            | If yes, provide your HST registration number:                                |             | RT_             |                          |
| 9.  | Fu         | еl Туре:                                                                     |             |                 |                          |
|     | ΠV         | Vind Turbine 🗌 Hydraulic Turbine 🗌 Steam                                     | Turbine     | Solar/ Pho      | tovoltaic                |
|     |            | Diesel Engine 🗌 Gas Turbine 📃 Fuel Ce                                        | ell         | 🗌 Biomass       |                          |
|     |            | Co-generation/CHP (Combined Heat & Power)                                    |             | Bio-diesel      |                          |
|     |            | Anaerobic Digester                                                           |             | Battery         |                          |
|     |            | Other (Please Specify)                                                       |             |                 |                          |
| 10. | Ple<br>Dra | ease provide a sketch of your proposed point of co<br>awing / Sketch No, Rev | onnection   | to London Hyc   | dro distribution system. |
| 11. | Co         | nnection to London Hydro's Distribution Syste                                | em (provi   | ided in your o  | original IFA):           |
|     | a.         | Proposed connection voltage to London Hydro's                                | distributio | on system:      | kV                       |
|     | b.         | Feeder Name:                                                                 |             |                 |                          |
|     | c.         | Hydro One Transformer Station Name:                                          |             |                 |                          |
|     | d.         | GPS coordinates of the connection point                                      |             |                 |                          |
|     | e.         | Fault contribution from Generator's facilities, with                         | n the fault | location at the | PCC:                     |
|     |            | Three-phase generators: 3-phase short circ                                   | uit_        | MVA             | ;                        |
|     |            | Single-phase generators: 1-phase short cir                                   | cuit        | MVA             |                          |
|     |            |                                                                              |             |                 |                          |

# 12. Single Line Diagram (SLD):

Provide detailed and updated SLD of the EG facility including the Demarcation Point / Point of Common Coupling ("PCC") to London Hydro's distribution system. This drawing shall include, but not be limited to:

- Electrical equipment at EG's facilities, their principal ratings, impedances, winding configurations, neutral grounding methods, etc.
- Protective relaying, synchronizing and revenue metering arrangements. The device numbers should be in accordance with those adopted in the ANSI / IEEE Standard C37.2 1979: *IEEE Standard Electrical Power System Device Function Numbers.*

The SLD shall include the following, as applicable:

- Disconnecting device at the connection point with London Hydro's distribution system
- Load break switches
- Fuses
- Circuit breakers
- Interface step-up transformer
- Intermediate transformer(s)
- CTs and VTs (quantity, location, connection, ratio)
- Generators (rotating / static)
- Power factor correction capacitors and their switching arrangements (particularly for induction units)
- Motors
- Power cables
- Surge arresters
- Any other relevant electrical equipment.

SLD Drawing Number:

Rev.

### **13. Generator Characteristics**

# a. Characteristics of Existing Generators

If Generator's facilities include existing generators, provide details as an attached document.

## b. Characteristics of New Generators:

### NOTE:

Please provide the manufacturer's technical data (electrical) for the generator or inverter.

| Number of generating unit(s):                                                               |                                               |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|-----------------------------------------------|--|--|--|--|--|--|
| Manufacturer / Type or Model No:                                                            | /                                             |  |  |  |  |  |  |
| Rated capacity of each unit:                                                                | kW kVA                                        |  |  |  |  |  |  |
| If unit outputs are different, please fill in additional sheets to provide the information. |                                               |  |  |  |  |  |  |
| Rated frequency:                                                                            | Hz                                            |  |  |  |  |  |  |
| Rotating Machine Type:                                                                      |                                               |  |  |  |  |  |  |
| Synchronous Induction Invert                                                                | er 🗌 Other (Please Specify)                   |  |  |  |  |  |  |
| (If the machine type is "Other", please                                                     | provide values equivalent to a Synchronous or |  |  |  |  |  |  |
| Induction type Generator)                                                                   |                                               |  |  |  |  |  |  |
| Generator connecting on:                                                                    | bhase L three phase                           |  |  |  |  |  |  |
| Limits of range of reactive power at the ma                                                 | chipe output:                                 |  |  |  |  |  |  |
| i Lagging (over-excited)                                                                    | · k\/AR power factor                          |  |  |  |  |  |  |
| i. Lagging (updar excited)                                                                  | k)/AR power factor                            |  |  |  |  |  |  |
| li. Leading (under-exciled                                                                  |                                               |  |  |  |  |  |  |
| Limits of range of reactive power at the PC                                                 |                                               |  |  |  |  |  |  |
| iii. Lagging (over-excited)                                                                 | : kVAR power factor                           |  |  |  |  |  |  |
| iv. Leading (under-excited                                                                  | I) kVAR power factor                          |  |  |  |  |  |  |
|                                                                                             |                                               |  |  |  |  |  |  |

|     | S                                                                  | Starting inrush current:<br>Generator terminal connection:                                                                                                                                                                                                                                                                                                                                                                                                              | pu<br>] delta<br>d generat<br>e: R | (multiple of f<br>star<br>tor:<br>ohms                                                                            | ull load current)<br>X ohms                                                    |
|-----|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
|     | For S                                                              | <ul> <li>Synchronous Units: <ol> <li>Nominal machine voltage:</li> <li>Minimum power limit for stable operation:</li> <li>Unsaturated reactances on:</li> <li>Direct axis subtransient reactance, Xd''</li> <li>Direct axis transient reactance, Xd'</li> <li>Direct axis synchronous reactance, Xd</li> <li>Zero sequence reactance, X0</li> </ol> </li> <li>iv. Provide a plot of generator capability curve (MW output vs MVAR)</li> <li>Document Number:</li> </ul> | /e                                 | kV<br>kW<br>kVA base<br>pu<br>pu<br>pu<br>pu                                                                      | kV base<br>_, Rev                                                              |
|     | For I                                                              | <ul> <li>nduction Units:</li> <li>Nominal machine voltage:</li> <li>Unsaturated reactances on:<br/>Direct axis subtransient reactance, Xd"<br/>Direct axis transient reactance, Xd"</li> <li>Total power factor correction installed: <ul> <li>Number of regulating steps</li> <li>Power factor correction switched per s</li> <li>Power factor correction capacitors are<br/>breaker opens</li> </ul> </li> </ul>                                                      | ttep<br>automat                    | kV<br>kVA base<br>pu<br>pu<br>kVAR<br>kVAR<br>ically switched<br>s □ No                                           | kV base                                                                        |
|     | For S                                                              | <ul> <li>SPC / Inverter type units: <ol> <li>Terminal voltage</li> <li>Line - interactive type (i.e. intended for parallel operation with electric utility)</li> <li>Power factor</li> <li>Battery backup provided</li> <li>Maximum fault current for terminal fault</li> <li>Standards according to which built</li> <li>Provide Manufacturer's technical brochur and specification sheet</li> </ol></li></ul>                                                         |                                    | V<br>Yes                                                                                                          | Doc. No                                                                        |
| 14. | Inter                                                              | face Step-Up Transformer Characteristics:                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |                                                                                                                   |                                                                                |
|     | a. T<br>b. T<br>c. N<br>d. N<br>e. T<br>f. II<br>g. H<br>Q. H<br>V | Transformer ownership:         Transformer rating:         Jominal voltage of high voltage winding:         Jominal voltage of low voltage winding:         Transformer type:         mpedances on:         High voltage winding connection:         Grounding method of star connected high volta         J Solid       Ungrounded         Jameplate rating and impedance values of Hig         V       Rating:         V       Rating:                                | Cus                                | stomer /<br>kVA<br>kV<br>gle phase<br>kVA base<br>pu, X:<br>ta star<br>ng neutral:<br>ohms<br>e Grounding T<br>pu | London Hydro  three phase kV base pu X: ohms Transformer (If applicable): X:pu |

| h. | Low voltage winding connection: |                     | 🗌 delt     | a 🗌 star   |      |      |
|----|---------------------------------|---------------------|------------|------------|------|------|
|    | Grounding method of star c      | onnected low voltag | ge winding | g neutral: |      |      |
|    | Solid Ungrounded                | Impedance:          | R:         | ohms       | X: _ | ohms |

## NOTE:

The term 'High Voltage' refers to the connection voltage to London Hydro's distribution system and 'Low Voltage' refers to the generation or any other intermediate voltage.

# 15. Intermediate Transformer Characteristics (if applicable):

| a. | Transformer rating:                             | kVA                |             |
|----|-------------------------------------------------|--------------------|-------------|
| b. | Nominal voltage of high voltage winding:        | kV                 |             |
| c. | Nominal voltage of low voltage winding:         | kV                 |             |
| d. | Transformer type:                               | single phase       | three phase |
| e. | Impedances on:                                  | kVA base           | kV base     |
|    | R                                               | pu X               | pu          |
| f. | High voltage winding connection:                | delta star         |             |
|    | Grounding method of star connected high voltage | e winding neutral: |             |
|    | Solid Ungrounded Impedance:                     | R ohms >           | K ohms      |
| g. | Low voltage winding connection:                 | 🗌 delta 🛛 star     |             |
|    | Grounding method of star connected low voltage  | winding neutral:   |             |
|    | Solid Ungrounded Impedance:                     | R ohms >           | K ohms      |

NOTE: The term 'High Voltage' refers to the intermediate voltage that is input to the interface step-up transformer and the 'Low Voltage' refers to the generation voltage.

#### 16. Load information:

- <u>k</u>VA a. Maximum load of the facility: \_\_\_\_\_kW
- b. Maximum load current (referred to the nominal voltage at the connection point to London Hydro's system): \_\_\_\_\_ A c. Maximum inrush current to loads (referred to the nominal voltage
- at the connection point to London Hydro's system): \_\_\_\_\_ A

#### Attached Documents:

| ltem<br>No. | Description | Document No. | No. of<br>Pages |
|-------------|-------------|--------------|-----------------|
| 1           |             |              |                 |
| 2           |             |              |                 |
| 3           |             |              |                 |

#### **Attached Drawings:**

| ltem<br>No. | Description | Document No. | No. of<br>Pages |
|-------------|-------------|--------------|-----------------|
| 1           |             |              |                 |
| 2           |             |              |                 |
| 3           |             |              |                 |

## CHECKLIST

Please ensure the following items are completed prior to submission. The application shall be returned if incomplete:

- □ Completed form stamped by a Professional Engineer
- □ Signed Study Agreement along with payment listed in the Study Agreement
- □ Single Line Diagram (SLD) of the Generator's facilities, must be stamped by a Professional Engineer

# NOTE:

By submitting a completed CIA application, the Proponent authorizes the collection by London Hydro Inc. ("London Hydro"), of any agreements and any information pertaining to agreements made between the Proponent and the Ontario Power Authority from the Ontario Power Authority, the information set out in the CIA application and otherwise collected in accordance with the terms hereof, the terms of London Hydro's Conditions of Service and the requirements of the Distribution System Code and the use of such information for the purposes of the connection of the generation facility to London Hydro's distribution system.

Expected Monthly Generation, Consumption and Output From the EG Facility:

| Expected: | Total Generation<br>(a) |            | Total Internal<br>Consumption<br>(b) |            | Total Output<br>(to London Hydro's<br>Distribution System)<br>(a-b)* |            |
|-----------|-------------------------|------------|--------------------------------------|------------|----------------------------------------------------------------------|------------|
|           | kWh                     | Peak<br>kW | kWh                                  | Peak<br>kW | kWh                                                                  | Peak<br>kW |
| January   |                         |            |                                      |            |                                                                      |            |
| February  |                         |            |                                      |            |                                                                      |            |
| March     |                         |            |                                      |            |                                                                      |            |
| April     |                         |            |                                      |            |                                                                      |            |
| Мау       |                         |            |                                      |            |                                                                      |            |
| June      |                         |            |                                      |            |                                                                      |            |
| July      |                         |            |                                      |            |                                                                      |            |
| August    |                         |            |                                      |            |                                                                      |            |
| September |                         |            |                                      |            |                                                                      |            |
| October   |                         |            |                                      |            |                                                                      |            |
| November  |                         |            |                                      |            |                                                                      |            |
| December  |                         |            |                                      |            |                                                                      |            |

\* This value would be negative when the generators are not in operation or when the internal consumption exceeds generation.